
Advanced Static Analysis
How can we use a disassembler (IDA Pro free) to learn more about the
malware’s functionality?

”Read” the book. «What is it about?» «Who did it?»
Language: Assembly

Part	3	

2

What now?

Advanced Static Analysis
•  code is still not running

•  Disassembly

–  ”To take appart”, Merriam Webster Dictionary
–  Translate from machine code into a symbolic language

(assembly code) so we can figure out how the program
works.

•  IDA Pro
–  Powerful dissassembler with debugging capabilities
–  Especially good for static analysis

3

Compiler	 Linker	 OS	Loader	

Source	code	
(C,	C++,	---)	

Object	code	 Executable	file	
(Binaries)	

Libraries	
(dependencies)	

Memory	
x86	–	4GB		

Static	 Load	Time	

Run	Time	

Instr-
uctions	

DLL	

OEP	

4

Levels of Abstraction

5

Recap: Microprocessor

•  Microprocessor: CPU, RAM, I/O and busses
•  CPU: controlling the operation by fetching,

decoding and executing one by one
•  Program: Set of instructions
•  Instructions: opcode and operand

–  Opcode: Specifies instruction type
–  Operand: operation (mem location or register)

•  CPU has some basic operations
–  Transfer (transfers data on buses between memory

locations)
–  Arithmetic, logic and shift (done by ALU between working

register and memory locations)

6

Instructions

•  Building blocks of assembly programs
•  Mnemonic (opcode) followed by operands (zero or more)

•  Move into ecx register the value 42 (hex)
•  mov ecx 0x42 (assembly language)
•  B942000000 (machine code in hex)
•  Machine code (binary)
•  10111001 01000010 00000000 00000000 00000000

7

Types of Instructions

•  Data Transfer
–  MOV, XCHG, …

•  Arithmetic, logic and shift
–  ADD, SUB, SHR, AND, OR, MUL, DIV, …

•  Branching and conditional
–  JMP, CALL, CMP, …

•  For more:
http://www.intel.com/content/www/us/en/
processors/architectures-software-developer-
manuals.html

8

Challenge 3

Ultimate: Understand everything

More realistic:

At what memory location do you find the function
that achieves X?

Explain the purpose of the function found at
memory location Y.

9

Challenge 3 The big picture

•  Use Ida Pro Free and graphic view to get the big
picture

•  How to get an overview?
–  Dont get lost in details
–  Follow function calls

•  Look at API’s. What understanding can you get?
https://docs.microsoft.com/en-us/windows/desktop/api/index

•  Unknown calls: Must follow to understand
–  ”Anything” inbetween function calls

•  Prepare input (arguments/parameters)
•  Use output (results)

10

Suggested approach

•  Open spybot.exe in IDA
•  <space> graphical view
•  Options-general-Disassembly- line prefix
•  Options-general-Disassembly- auto comments
•  Highlight by clicking on <call>

11

Public start

12

Public start

•  Block 4011CB – Public start
–  Scroll down – click once on <call> - highlights it
–  For now: Initialization and calls 407AA8
–  go to 407AA8 (double click), esc gets you back

•  Block 407AA8
–  Overview (ctrl scroll button)
–  Highlight opcode <call>
–  Function calls (ignore for now)

•  GetCommandLineA (407AAD)
•  Strchr (407ABF)
•  GetModuleHandleA (407AF9)

–  Call to 401250 – follow it

13

407AA8 overview/structure

14

Block 401250 overview

15

•  Block 401250
–  401287: Call unknow function 402B81
–  Two arguments
–  ”random” string – ”tsm…fpn”
–  Number 33 (length of th erandom string – coinsident?)
–  Function 402B81 – deobfuscation?
–  4012B0 conditional jump based on eax

•  Eax is the result of strstr
•  Input is result of function 402B81 and ”ExistingFileName”

–  Both paths eventually end up in 401482
•  Directly (eax is zero)
•  Indirect (eax is not zero) – follow this first

16

Block 401250

17

•  Block 4012B6
–  call sprintf – make string \\wuaumqr.exe

•  Block 40133D
–  Start of big loop that ends in 40131B
–  Block 40131D looks very similar to Block 4012B6
–  40134D CopyFileA

•  Copies the file ExistingFileName to NewFileName
•  First time in the loop from spybot to wuaumqr?
•  Return Zero if fail

–  Fail: goto 4012D8 – eventuelly takes you to 40131B (the
big loop)

–  Success: goto 401356

18

Block 4012B6 and 40133D

19

•  Block 401356 (copy success)
–  Creates a directory ”kazaabackupfiles
–  Mostly registry related operations
–  Call 402BD7 also mostly registry operations
–  Ignore for now

•  Block 401458
–  Conditional jump (end of indirect route to 401482)
–  Compares array of strings with zero
–  Value of esi decideds which entry of array we point to
–  Esi large enough we will point to zero
–  Double click on off_4120E8 and a list of 14 filenames are

shown
–  Done with all 14: goto 401462
–  Not done: goto 40140D

20

Block 401356

21

Block 401458

22

Array of hardcoded filenames

23

•  Block 40140D
–  401452 CopyFileA

Copies ExistingFileName to NewFileName
–  ExistingFileName = spybot.exe
–  NewFileName = off_4120E8[esi*4]

This is a reference to 14 filenames at 4120E8 offset by
esi*4

–  401457 increments esi for next file until all spybot.exe
has been copied to all 14 names, then continue to
401462

24

Loop to copy 14 files

25

•  Block 4012D8 (fail copy)
–  GetTickCount (ms since startup)

•  Antidebug – check if debugged, i.e. execution takes too long
•  Does it look like this is the purpose here?

Used as seed for the ”initialize random number generator”
–  Look at loop 401304 to 401303

•  Continues until esi=edi
•  esi increments by 1 each iteration in 401303
•  edi is 4 less than eax (401314 & 401316)
•  eax=all one in 40130A
•  Loop 40130D increments aex until byte ptr to ecx+eax is zero
•  Ecx is string DATA (wuaumqr.exe)
•  Block 4012E8 randomly change one and one byte in DATA

•  Randomly change each letter in wuaumqr (you would have

seen this if you ran spybot twice in a row)

•  When done cont large loop 40133D and CopyFileA (40134D)

26

Block 4012D8

27

•  Block 401462
–  401476: ShellExecute

•  Open the content of lpFile (file or folder)
–  40147D: ExitProcess

•  Ends the calling process and all its threads
•  NB! Does not terminate child processes

So how do we get to 401482?
•  First execution start a copy of itself that will arrive

at 401482, but the initial code is terminated

Block 401482 and onwards

Is this where the keylogger is? We have not seen it yet

29

•  Block 401482
–  Get ExistingFileName

•  Block 40148B
–  Loop, find length of ExistingFileName

•  Block 401492
–  Lenght ExistingFileName stored in edi
–  Get Data

•  Block 40149D
–  Loop, find length of Name

30

Block

401482
40148B
401492
40149D
4014A4
4014D7

31

•  Block 4014A4
–  Lenght Name into edx
–  How are edx and edi used?
–  sprintf?
–  CreateMutexA and GetLastError: infected before?

•  Block 4014D7
–  ExitProcess if infected before (mutex exist)

•  Block 4014DE
–  LoadLibraryA

•  Block 4014EE
–  GetProcAddress: RegisterServicesProcess

•  Block 40150C
–  GetProcAddress: CreatToolhelp32Snapshot
–  GetProcAddress: Process32First
–  GetProcAddress: Process32Next

32

Block
4014DE
4014EE
401502
40150C
40153C
401551

33

•  Block 40153C
–  WSAStartup version 101h

•  Block 401551
–  WSAStartup version 1

•  Block 40156C, 401582, 401598
–  Loops imul 348, 532, 120
–  Repeat 30, 40, 30
–  And , 0 - could this be clearing memory areas?

34

Block
401563
40156A
40156C
401580
401582
401596
401598

35

Polling Keys

•  Block 4015A9
–  CreateThread (4015BD): StartAddress 4037CD

•  Loop, sleep X ms
•  Call 403802 (unknown)

–  Call function 402AEA (4015D3): (unknown)
–  CreateThread (4015EC): StartAddress 402BBD

•  Loop, sleep 30 sec
•  Call 402BD7 (unknown registry operations)

–  CreateThread (401613): StartAddress 4030E0
•  Keylogger functionality (polling keys) – finally J

–  Call function 402AEA (4015D3): (unknown)

36

Block
4015A9

37

Networking

•  Block 40165E
–  Call function 402CE8 (Network functionality)
–  Argument: 209.126.201.20 (esi=0) or 209.126.201.22

(esi=1) alternating.
–  401685 inc esi
–  40165A cond jmp

•  Esi=1 goto 40165E, esi=2 goto 40165C set esi=0
–  In loop, sleep 5 sec until eax (result of 402CE8?) is 1

•  Block 402CE8
–  Loop, sleep 40771Bh
–  Call function 407585 (Network Functionality)

•  socket, memset, htons, inet_addr, gethostbyname, connect,
closesocket

–  Call function 402E85 (Network)
•  IRC channel
•  hotmail.com

38

Block 401652, 40165C, 40165E, 40167B, 401688

39

Block
402CE8

40

Block
407585

41

Challenge: key logger?

Basic static and dynamic analysis suggest the malware
has key logger functionality:

1.  At what addresses are keys examined?
2.  What keys are examined?
3.  Goto loc: 403579. The conditional jump at 403580

defines two loops.
1.  What is the purpose of ebp+var_4?
2.  What is the pupose of the short loop?
3.  What is the purpose of the longer loop?
4.  How often are keys polled?

42

Answer
1.  Key are examined using GetAsyncKeyState and GetKeyState

1.  GetAsyncKeyState (4032F3)
Is a key up or down? Has the key been pressed since last time?

1.  What key? – EBX
2.  Where is EBX set? vKey function of EDI (click og see list)
3.  EDI set by EBP+var4
4.  EBP+var4 incremented in 403579
5.  CMP with 5Ch (92 keys checked)

2.  GetKeyState
Is a key up or down? Is a key toggled on or off?

1.  4032DB – 10h (shift key)
2.  403306 – 14h (CAPS lock)
3.  403332 - 14h (CAPS lock)

2.  Loops
1.  EBP+var4: Counter, incremented in 403579 until it reaches 92 (5Ch)
2.  Short loop: For each iteration poll the key defined by EBP+var4. Also check some

special keys (shift, CAPS lock, windows (5Bh) – Also includes code to write strings to
stream – writing to keylog.txt?

3.  Long loop: When all 92 keys (out of 255) are testet a larger loop is repeated
Check what is the active window (GetForegroundWindow), write string to stream
(4035AF) and retrieves the window text
Sleep before short loop is repeated

4.  40320D push 8 (8 ms pushed on stack before sleep is called)

43

44

45

46

47

Questions?

48

Challenge – Find Function

•  How many times is the function fopen called?
•  Go to the first (lowest address) fopen in the list?

State the address. (The next 4 questions are
related to this specific instance of fopen)
–  What is a prologue in general and specific for this

instance of call fopen?
–  What is an epilogue in general and specific for this

instance of call fopen?
–  What calling convention is used here? Explain how you

found your answer.
–  Explain the purpose of the 4 next assembly instructions,

after “call fopen”?

49

Suggested approach

•  Many ways to search for Fopen (jump name,
search text)

•  Fopen in names window, double click
•  Choose xref to fopen (”x” or right click)
•  All instances with address listed
•  Choose lowest address (usually the first)

50

fopen – 7 instances

51

Answer

•  7 times
•  403149
•  Prepares the stack and registers for transfer of control: Preparing the input

argument for a function call. Placing values on the stack or in registers,
depending upon the calling convention. In this case pushing two variables on the
stack

•  Restore stack and registers: Cleaning up the stack (and registers) after returning
from the function call. Depending upon the call convention this is either done
inside or outside of the called function. In this case cleaning up is done outside
(by caller) by moving the stackpointer in 40314E.

•  CDECL: stated when you dobbelclick on fopen in your list, or recognize that
prologue and epilogue follows this calling convention.

•  00403149 call fopen function call
•  0040314E add esp, 18h restores the stack
•  00403151 mov ebx, eax copies answer from fopen into ebx
•  00403153 or ebx, ebx is ebx zero?
•  00403155 jz short loc_40 Jump condition: did we open a file?

52

Challenge opcode knowledge

Explain the single instructions found at the following
addresses. You do not have to find the actual value of
arguments used, e.g. if eax is involved, it is enough to
state that “the value of eax…”.

1.  403109
2.  403142
3.  403231
4.  403270
5.  403258
6.  4032FD
7.  403342
8.  403345

53

Answer
1.  403109 mov [ebp+var_AD8], eax

Moves the value in EAX onto the stack, with offset var_AD8 (local variable)
2.  403142 lea eax, [ebp+var_AD4]

Moves local variable ebp+var_AD4 into ecx, i.e value on stack offset by
var_AD4 is put into ecx. NB! Not value at memory location found on the stack
displaced by var_660 (this is the difference between LEA and MOV)

3.  403231 or eax, 0FFFFFFFh (bitwise or)
4.  403270 push ds:dword_40BF2C

Global variable added to stack
5.  403258 add esp, 0Ch

constant 0ch added to esp (moved stack pointer 3 32bit positions – clean up
after function call)

6.  4032FD test di, 8000h
compares 16bit di med hex 8000

7.  403342 cmp ebx, 40h
ZF satt hvis ebx er lik 40h

8.  403345 jle short loc_40335C
jump if dst<=src after cmp

54

Challenge mutex

We suspect this sample to use mutex (also known as
mutant)

1)  Why do we suspect this?
2)  What is the most likely purpose of using mutex/

mutant?
3)  What is the mutex/mutant for this sample?
4)  Identify the address where the mutex is created.
5)  How is the mutex used?

55

Answer 3.4
1.  CreateMutex part of kernel 32 library observed by basic static analysis.

Did we see any strings that could be the MUTEX?
2.  Malicious software sometimes uses mutex objects to avoid infecting the system more than

once, as well as to coordinate communications among its multiple components on the host.
Incident responders can look for known mutex names to spot the presence of malware on
the system. To evade detection, some malware avoids using a hardcoded name for its
mutex.

3.  Name: krnel
Look at the arguments pushed to stack before calling CreateMutex. Double click on Name

HANDLE CreateMutexA(
 LPSECURITY_ATTRIBUTES lpMutexAttributes,
 BOOL bInitialOwner,
 LPCSTR lpName
);

4.  Hardcoded in memory 412074
5.  Tried to create the mutex. Check error messages.

If error message = 0B7h (cmp) ZF=1 (set)
ZF=0 continue
ZF=1 call ExitProcess

What is error code 0B7h? ERROR_ALREADY_EXISTS

If mutex exists, terminate the process, since computer is already infected

56

